

A 'DAY IN THE LIFE' OF THE HUDSON RIVER ESTUARY October 20, 2016 http://www.ldeo.columbia.edu/edu/k12/snapshotday/

For more rapid results this year we are asking samplers to submit their fish, salinity and D.O. data directly online at the following url from the field. Please then fax or send the <u>full set of sampling data</u> as noted below to Margie Turrin including fish, DO and salinity! Thank you!

http://tinyurl.com/hfrm9hx

PLEASE INCLUDE THIS COVER SHEET WITH YOUR SUBMITTAL

• These recording sheets contain every test but you can chose to do any combination.

• Activities to support your field experience are available at the website link above.

• Please submit your results to Margie Turrin (845-365-8179 (fax) or e-mail

mkt@ldeo.columbia.edu) within 24-48 hours of collection! Questions? 845-365-8494.

• PLEASE include this cover sheet with any data sheets you submit. THANK YOU!

RECORDING SHEET I - BACKGROUND INFORMATION.

1.	Site contact person				
	Organization				
	Street				
	City		State	Zip	-
	phone	_fax		email	
2.	School/group name				District
	Name of teacher/group	leader			
	Street				
	City		_State	Zip	
	phone	fax		email	
	Number of school stud	lents		Number of Adults_	
	grade level/High Scho	ol cou	rse		

3. Where are you sampling. Please be as specific as possible.

(Example: swimming beach, Kingston Point, City of Kingston, Ulster County.)

4. Using the map included with your packet, give your location along the Hudson estuary in river miles. (The Battery at the southern tip of Manhattan is River Mile 0; the Federal Dam at Troy is River Mile 153.)

River mile _____ GPS Latitude

_____ Longitude___

If you have a way to determine the latitude and longitude of your site, enter that here.

Name_____

DITL 2016 Observing Surroundings Location_____

Let's look at your sampling site. At this station we will describe the site and any plants in and around your collection area. Include plant materials in the water, as well as along the water's edge.

1. Sketch your sampling site. Be sure to include a compass rose showing N/S/E/W and locate the River on your sketch, and note your sampling site.

2. <u>Land type</u> around your sample site? Check all	PierGrassy
that apply.	ForestedParking Lot
3. <u>Surrounding land uses as percentage</u> of 100	Urban/residentialForested
(for example 50% is half the usage)	Industrial/commercialBeach
	Other
4. Describe the shoreline - check percentage	BeachCovered in vegetation
below and then all that apply in next column:	Banks alteredRipRap (Large rocks)
	Wood BulkheadConcrete Bulkhead
SandyMuddyRocky	Pipe entering the water
5. Describe the water area at the sampling site	DepthBottom sandy
	Bottom muddy Bottom rocky
	Bottom weedy
6. Describe the water itself	CalmChoppy
7. Plants in the water (water chestnut, water	% Plant
celery etc.) that you have identified & percent	% Plant
of total area covered. IF NONE please check	% Plant
None.	% Plant
	No Dianta in the water area
	INO Plants in the water area

Observations

Note what you see in the area; are there bits of brick on the ground? lumps of coal? water chestnut seeds (devil's head-s), shell pieces or full shells? Crab shells? Is it overgrown?

From observations you have collected here can suggest of any that might "impact" the data you are collecting here?

What else do you see? Birds? Animals? Butterflies? Dragonflies? What else?

The river is used for business and pleasure. Record how it is being used.

8. Commercial traffic: Record any <u>large boats, tugs, or barges</u> traveling on the Hudson. Please record the name and color! A loaded barge is full of cargo and rides lower in the water than a light one.

Time:	name	color	North or Southbound	loaded or light
Time:	name	color	North or Southbound	loaded or light
Time:	name	color	North or Southbound	loaded or light

9. Recreational Traffic: List recreational vessels you see on the Hudson (sail, speedboats)

Time:	name	color	North or Southbound	loaded or light
Time:	name	color	North or Southbound	loaded or light
Time:	name	color	North or Southbound	loaded or light

Name_____ DITL 2016 Physical Conditions Data Location_____

(weather, tides, currents)

1. Location: We will be comparing data with other groups along the Hudson, so it is important to note our exact location. Location Name _____

Using your Hudson River Estuary map, g	give your location in <i>river miles</i> :	and if possible
GPS Latitude:	GPS Longitude:	

2.	Tides: Tides cause the water of the Hudson	Start time: Water height in cm*
	River to rise and fall due to the gravitational	Check time: Water height in cm
	pull of the sun and the moon. Tides can be	Check time: Water height in cm
	, measured over time with a Tide Meter Stick , or	Check time: Water height in cm
	another marker to see if the water is rising,	Check time: Water height in cm
	falling, or staying the same. First record the	Check time: Water height in cm
	time, then check the water level using your	Check time: Water height in cm
	measuring stick or tape. Check the stick again	
	regularly (every 15 to 30 minutes) and record.	*if on a dock measure down from the dock
3.	Currents : Currents record the direction of	Time: Circle: ebb - flood - still*
	water movement. A current moving downriver is	Cm/30secsCm/secKnots
	called ebb , a current moving upriver it is called	
	<i>flood</i> , and if there is no current it is <i>still</i> . Toss	Time: Circle: ebb - flood - still*
	an orange or a solid stick as far as you can out	Cm/30secsCm/secKnots
	into the river and watch to see which way it	
	moves. <u>Record:</u> Ebb or Flood or Still. Time its	Time: Circle: ebb - flood - still*
	movement for 30 secs and record, then divide	Cm/30secsCm/secKnots
	by 30 to get per cm/sec of movement.	
	To determine knots: measure distance orange	Time: Circle: ebb - flood - still
	or stick travels in 30 secs. Divide by 30 for	Cm/30secsCm/secKnots
	cm/sec and then divide by 51.4 for knots. The	* Note if anything about the shoreline could cause the
	formula for knots is (cm/sec)/51.4	current near shore to flow in a different direction
		than the current in the middle of the Hudson?
4.	Air Temperature: How to convert:	Time:Air temperature:°F°C
	°C = 0.556 X (°F - 32°)	Time:Air temperature:°F°C
	°F = (1.8 X °C) + 32°	Time:Air temperature:°F°C
5.	Wind speed: If you use the Beaufort chart	Time:Beaufort # Wind Meter: Units
	record Beaufort force #. If you use a wind	Wind Direction (comes from)
	meter record number registered AND units.	wind Direction (comes from)
6.	Cloud Cover: Select from the scale provided a	Time:
	percentage of cloud cover.	clean partly cloudy mostly cloudy overcast
		(25%) (26-50%) (51-75%) (575%)
7	Pain (Precipitation) Today & Weather for the	Time: Dain If checked note how steadily it
	nast 3 days: Rain can affect our readings and	
	so can extreme changes in temperature over a	rained
	short period. We record weather today and for	Briefly describe the weather for the last 3 days: Rain,
	the last 3 days.	
		wina, unusual temperatures?

Λ

I

2016 SALINITY Recording Sheet: When we measure salinity we are measuring the amount of salt present in water. Much of this salt is sodium chloride, just like table salt. The main source of salt in the Hudson is seawater (~35,000 ppm) pushing in from the ocean. There are only small amounts of salt in the fresh water entering the river from the eroding rocks and road salt. * Expected Hudson Range: ~40 ppm in the freshwater section to ~29,000 ppm in harbor* Put a checkmark in the box next to the measuring method you are using. Follow the instructions for completing the test and then record your results below.

TITRATOR STRIPS measure chloride by color change (to white) along a scale. Low Range Tabs _____ High Range Tabs _____ On strip's scale, white color ends at _____. Read across the conversion table and RECORD: Units_____%NaCl_____ mg/L Cl _____

 DROP COUNT TEST KITS usually measure chloride using color change as a liquid chemical is added to the sample drop by drop.

How many drops were needed for the sample to change color? _____ drops

Number of drops times conversion factor (from instructions) equals chloride concentration.

_____X ____ = ____mg/L Cl

 HYDROMETERS measure water's density (its specific gravity) using a floating object. As salinity increases, density increases, and the object floats higher.

If using a plastic hydrometer with a pointer, record salinity here: _____ parts per thousand (ppt)

If using a glass hydrometer floating in a water sample: Record the temperature of the water sample °c

Record the specific gravity (to the fourth decimal place) from the hydrometer scale where the stem breaks the water's surface. Read at water level, not at the top of the meniscus. Record salinity from the specific gravity conversion table: _____ parts per thousand (ppt)

• REFRACTOMETERS measure how light is bent—refracted—as it enters water. Refraction varies with density, which in turn varies with salinity (density increases with salinity).

Read salinity where the shadowline crosses the display scale: _____ parts per thousand (ppt)

• METERS measure how well water conducts electricity (better as salinity increases). They may show conductivity, salinity, or chloride concentration; be sure to specify units.

Reading ______ Units of measurement _____

_____ DITL 2016 Chemical Description Location_____

pH - Expected Range - Most fish prefer 6.5 to 8.5 - pH measures how acidic or basic (alkaline) a solution is measured on a scale from 0 to 14. Neutral is 7.0, Acidic is lower than 7.0 and Basic is higher than 7.0. There are NO UNITS used with pH.

Circle equipment ı	used for the test:		
Test Strips	color match test kit	meter	pH pen
Time:	Reading 1:	Reading 2:	Reading 3:
Time:	Reading 1:	Reading 2:	Reading 3:
Time:	Reading 1:	Reading 2:	Reading 3:
Time:	Reading 1:	Reading 2:	Reading 3:

- *Salinity Expected Range ~40 ppm in freshwater section up to 29,000 ppm in harbor. A measure of the amount of salt present in the water (we are measuring the chloride). Ocean salinity is measured in 'Parts per thousand' (PPT). Fresher water with smaller amounts in 'Parts per million' (ppm) or mg/l.
- (Note: There are other measures of salinity: 'Practical salinity units' (PSU), Conductivity as mS/cm (millisiemens) or uS/cm (Microsiemens) but we focus on ppt and ppm)

Circle equipme	nt used for the	e test (what ead	ch measures is	s listed belov	v each equipn	nent):
Drop count test	kit Quantal	o strips me	ter	refractor	neter hy	ydrometer
(chloride)	(chlorid	e) (PP	'T or mS/cm)	(PPT)	(F	PT)
Time:	Reading 1:	Reading 2	: Red	ading 3:	(<u>note corre</u>	ct units)
Time:	Reading 1:	Reading 2	: Red	ading 3:	(<u>note corre</u>	ct units)
Time:	Reading 1:	Reading 2	: Red	ading 3:	(<u>note corre</u>	ct units)
Time:	Reading 1:	Reading 2	: Red	ading 3:	(<u>note corre</u>	ct units)
*(NOTE THE	RE IS AN IND	IVIDUAL CALCU	ILATION SHE	ET FOR SAL	INITY)	
• Water ter	mperature Ex	xpected High [•]	Temperature	in October	would by <	25°C
Record water te	mperature in de	arees Celsius or	dearees Fahre	enheit. TO co	nvert betwee	n the two
C = 0.556	X(°F - 32°)	°F = (1.8	x°C)+32°			
* Time:	water depth	n (feet):	_			
Reading 1:	_°C°F	Reading 2:	_°C°F	= Average:	°C	° F
* Time:	water dep	th (feet):				
Reading 1:	_°C°F	Reading 2:	_ °C °F	= Average: _	°C	° F
* Time:	water depth	(in feet):	_			
Reading 1:	_°C°F	°F Read	ling 2: •	C Average: _	°C	° F
Alkalinity						
Time:	Reading	g 1:	Reading 2	:	Reading 3: _	
Nitrates						
Time:	Reading	g 1:	Reading 2	:	Reading 3:	
Phosphates			5		<u> </u>	
Time:	Reading	g 1:	Reading 2	:	Reading 3: _	

Name___

L

DITL 2016	Chemical	Description Lo	cation
-----------	----------	-----------------------	--------

Dissolved oxygen (DO) Healthy Expected Range 5.0-11.0 mg/L

The amount of dissolved oxygen in the water is one of the most important factors in telling how healthy that ecosystem is. Many variables affect DO, including temperature, time of day, presence of plants, and wind conditions. DO measurements are given in mg/l and as percent saturation. 100% saturation means that the water cannot hold any more oxygen at that temperature. If more oxygen is added (such as by a high wind or a waterfall) the oxygen will go from the water into the air. **Circle equipment used for the test**:

meter drop count kit other For test temperature use average from water temperature (#3) above. For % saturation calculation use chart on bottom of page.

*	Time:	_Water temperature in ^o C	DO (mg/l) or PPM:	_% saturation
*	Time:	_Water temperature in [©] C	DO (mg/l) or PPM:	_% saturation
*	Time:	_Water temperature in [●] C	DO (mg/I) or PPM:	_% saturation

5. % Saturation of Dissolved Oxygen (DO) Healthy Expected Range 90% or above

Source of chart: http://waterontheweb.org/under/waterquality/oxygen.html

For a quick and easy determination of the percent saturation value for dissolved oxygen at a given temperature, use the saturation chart below. Locate your DO reading on the bottom scale (ppm equals mg/L). Locate the temperature of the water in degrees C on the top scale. Draw a straight line between the temperature and DO. The % saturation is the value where the line intercepts the saturation scale.

ī

Name:	2016	Turbidity
-------	------	-----------

 Turbidity is a cloudiness of the water. Light can penetrate farther in clear water than it can in turbid water. Estuaries like the Hudson River are naturally turbid. Turbidity can be caused by phytoplankton and zoo planktons, bits of dead plants, salt, sand and mud. Measure the turbidity at your site on the river - be careful if you are collecting water for a site tube NOT to step in the water as you collect it or you will add turbidity to your sample.

Time:		Circle equipment used					
1)Secchi disk	(cm) 2) Long Sig	ht tube (cm) 3)	Short Site Tube (JTU)				
4)Turbidimete	er (NTU)						
Reading	Reading 2	Reading 3	Average	_			
(Make sure that you RECORD the correct unit for the piece of equipment that you are using; feet, cm, meters, JTU's or NTU's)							
		Observations					
is the water	really turbla? How v	vouia you describe li	in words?				

NOTE in 2016 we will not be collecting chlorophyll samples.

NameDITL	2016 Fish and Macroinvertebrates ID Location	
----------	--	--

Please use separate sheet for each seine OR note what was caught in each seine by noting seine #.

TIME	LENGTH OF NET					
Fish Species:	# of individuals:	Size of largest (unit)				
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						

Macroinvertebrates (For crabs include

type (blue,	mud,	Asian	etc.)	å sex	(M/F)
1			#		

- 2._____#_____
- 3. ______#_____ 4 _______#
- 5.______#_____
- 6._____#_____
- 7______#_____
- 8._____#____
- 9._____#_____

o

If your group can compute Catch Per Unit Of Effort Please Record This here. Seine #____ Time____ Catch Total_____ Length of Pull_____ Computed CPUE_____

DAY in the LIFE PUSH CORE SEDIMENT LOG

GRAB ID#	Site I	Name	DATE		FORM COMPLETED BY:		
					GROUP #		
TIME	LATI	TUDE	LONGITUDE		WATER DEPTH	LOCATION	
	Yes	No			Descriptors - Please note	additional observations	
H₂S smell					H₂S smells of rotten eggs.	suggesting anaerobic bacteria	
Oil					Oil creates a slight smell, a slickness and a sheen		
Ovidized ten*					*oxidation (reaction with oxygen) creates a distinctly		
					estimate dimensions of o	kided layer, etc. and draw below	
	Absent	Rare	Common	Abundant	Additional Comments		
Clay					very fine material - grey color & rich dense feel		
Mud					smooth feel between fingers - brown color		
Sand					gritty feeling between fingers		
Gravel					pea sized pieces of stone		
Pebbles					pieces of stone larger than pea		
Leaves							
Wood							
Shells Oysters (dead/alive?)							
Freshwater mussels (except zebra)							
Zebra mussels							
macroinvertebrates							
Brick							
Coal							
Slag					industrial byproduct - chu	nky look, light, air filled	
Living vegetation:							
Length of Core:					Length of Oxidized core to	op (if present):	
If Bagged - Number On Core Collection Bag							
Sketch of your core below with measurements for each section & total core (be sure to label the top and bottom):							
<bottom top=""></bottom>							